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There are two dominant viewpoints regarding
the cause of low transport in ERS

1. E×B shear stabilization of turbulence

2. Shafranov shift gradient (∆') stabilization

Both pictures exhibit a threshold 
quality

Both predict bifurcations and
sustained high confinement with 
increasing ∇p

     On TFTR, both effects are important   

• E×B shear is necessary to keep 
confinement high, fluctuations low

With ∆’ effects alone, ERS is lost

• E×B shear beats out instability drives 
only if ∆’ effects are present

• Variability in a shear suppression 
threshold criterion is found
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Two plasmas nearly identical early in time can
follow very different paths
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Plasma
pressure
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Transition yields good core confinement,
strong  peaking of density and pressure
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• Analysis for barrier physics studies done near
r/a = 0.3, where gradients are large and
well documented

shear-reversal
region



E×B shear, Shafranov shift are candidates
for transition model

I. E×B shear stabilization (Diamond)

Er = ∇p/(nZe) + VφBθ - VθBφ

increasing ∇p ⇒ larger Er and Er shear

Shearing rate:

  γE×B ≡ 
(RBθ)2
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On outer midplane,
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Threshold criterion:

γE×B ~ γ lin
max  ⇒ no transport  (Waltz et al.)



II. Low J(r) in core  ⇒ large ∆'

favorable precession of trapped particles

fluxes reduced with ∇p increase

may lead to a bifurcation on its own

(M. Beer: next talk)
(J. Drake, edge ballooning modes, 
PRL)

Both suggest a combined picture:
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Bursting fluctuation levels fall when ExB shearing rate
exceeds maximum linear growth rate

TFTR

• Reduction in turbulence is at ERS transition time

• δn/n measured from reflectometry (Mazzucato, 4F.06; 
PRL 77, 3145)
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Separation of Er and ∆' effects aided by 
develpment of nearly steady-state ERS

        

• Plasma pressure profile nearly 
constant in postlude

• Steady-state with half of available 
power allows Er variations with co, 
counter beams in postlude
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Back-transitions are correlated with applied 
torque at constant power

TFTR

• Strong co-injection leads to loss
of ERS confinement

• nearly balanced had sustained ERS

• toroidal rotation drive of instabilities
expected to be small (Rewoldt,1S.15) 
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Er was varied during the postlude by 
changing Vφ with co, counter neutral beams 

TFTR

2.3 s: 
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Er = ∇p/(nZe) + VφBθ - VθBφCarbon force balance:



Core stored energy collapses when γE×B
is driven to small values by co-rotation

TFTR

• Change in γE×B precedes back-transition

• Back-transitions at similar values of γE×B ~ γlin

• ∆' unchanged until loss in confinement
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Core fluctuation levels are correlated 
with local transport

TFTR

• Fluctuations measured with reflectometry
(Mazzucato)
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•  Ip flat-top not reached until 2.0 sec. 

•  Early ⇒  larger q(0), qmin, Shafranov shift,∇p 

TFTR
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Heating earlier in current evolution 
increases γE×B and ∆', consistent with

lower power threshold

increased ∇p 
on outer midplane

increased dBθ
dR

1
Bθ

Both combine to

give larger γE×B
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• similar q profiles

• Rates shown just prior to ERS transition .

• Radius chosen for peak  γE×B.

B field scan  reveals strong scaling of power
threshold and  variations in E ×B shear 

stabilization criterion
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Strongly Unbalanced NBI
Raises Threshold Power

TFTR

• With co-injection ∇p increases
oppose Vφ increases

•  Transition can be obtained with 
PNB=16.5 MW and Pco/PNB = 0.7 

•  Counter rotating case more difficult to
explain
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Summary

1. Combined transition picture is consistent 
with ERS transition and reduction in 
turbulence

2. E×B shear is necessary to keep high 
confinement

With ∆' effects alone, ERS is lost

3. ∆' effects required for sustained E×B 
shear suppression with increasing ∇p

4. Challenges
In B scaling experiment, γE×B/γ lin

max  at 
transition varies by factors of two or 
more

need to find where the 
dependencies are
∆' more important at low B?

Power threshold higher with strong 
rotation



Transport barriers with naturally occurring
Er shear may not scale favorably to a

tokamak reactor

It may be energetically unfavorable to
generate enough rotation on ITER to create a
barrier.

Scaling of ∇p drive to ITER-like machines is
unfavorable if profile scale lengths increase
with system size

⇒ smaller machines, like spherical 
tokamaks, may be better suited for 
transport barrier formation

⇒ IBW may be needed to act as a low-
power trigger mechanism


